Data Communication for Automotive Applications and Test Benches

Products and Engineering Services
Products and Applications

PC Interfaces: Page 4-5
Network connection of PC-based analysis, simulation and control applications.
- CAN, CANopen, SAE J1939, FlexRay, LIN

Wireless Communication: Page 4-5
Wireless connection of PC-based analysis, simulation and control applications as well as bridge solutions.
- CAN, CANopen, SAE J1939

Repeater: Page 6
Coupling of CAN networks, electrical isolation and CAN high/low speed conversion.
- CAN, CANopen, SAE J1939

Bridge/Gateway Solutions: Page 7, 10-11, 12
Coupling of different networks with filter and signal conversion functionality.
- CAN, FlexRay, LIN, EtherCAT

Analyzing Tools: Page 8, 9
PC-based analysis and stimulation.
- CAN, CANopen, SAE J1939, FlexRay, LIN

Hand-held Service Devices: Page 9
Mobile test and analysis of networks.
- CAN, CANopen

IO Modules: Page 14
Network connection of analog and digital IO signals.
- CAN, CANopen, EtherCAT

Protocol Software: Page 13, 15-16
Protocol stacks for the implementation of higher layer protocols into customer hardware.
- CANopen, SAE J1939

Residual Bus Simulation: Page 10-12
Residual bus simulation for FlexRay and CAN systems based on the IXXAT Embedded Platform.
- CAN, FlexRay, LIN

All brands and product names included in the catalogue are protected trademarks of their individual owners. Technical modifications, errors and misprints reserved. The most recent technical specifications and information are available on the IXXAT website at www.ixxat.com
About IXXAT
A capable partner for embedded system solutions and advanced data communication

IXXAT is one of the leading suppliers of data communication technology for the automation and automotive industry.

With innovative, powerful and cost effective products as well as with high quality standards for our services and products we strive for long-term partnerships with our customers. To this end we continually invest a considerable amount of our resources in the research and development of new technologies and products.

IXXAT belongs to the Swedish listed public HMS group, which is represented worldwide with numerous local branches and distributors to ensure the best possible customer service.

The quality of our products
For many years quality management has been the foundation of our work and an incentive for continual development.

To ensure the high quality of our products and services, we rely on a quality management system according to ISO 9001 since 1996. We further develop processes using defined development directives for hardware, software and standardized review processes. For the development of safety-critical hardware and software pursuant to IEC61508, we also employ a functional safety management system.

Experience and primary applications
As a pioneer of CAN technology, we have made major contributions to the successful growth of CAN in industrial applications. IXXAT has been actively involved in the development of the internationally accepted CANopen standard from the very beginning. Our primary applications in the field of industrial communication systems involve solutions based on CAN (CANopen, DeviceNet), real-time Ethernet (EtherCAT, POWERLINK, EtherNet/IP, PROFINET, Sercos, Modbus-TCP) and Safety (CIP Safety, fSoE, PROFIsafe, openSAFETY).

The development of optimum solutions for tasks and problems at the application and system level is another focus of our activity. Our customers benefit from our experience in the area of embedded systems and data communications.

Industries
IXXAT products are used worldwide in a wide variety of applications, including:

- Automobile and commercial vehicle industry
- Trains and rail-bound vehicles
- Marine and aerospace
- Industrial automation and mechanical engineering
- Medical technology
- Elevators
- Regenerative energy systems
- etc...

Developments on behalf of our customers
As a development service provider, we can look back on more than 25 years of experience. In this period we have implemented more than 500 development projects for renowned international customers with a high level of customer satisfaction.

We support our customers throughout the complete development cycle for all relevant technologies in the field of data communication from system design to development of hardware and software, and series production of hardware assemblies and delivery of complete data communication systems.

Our customers benefit not only from development services, but also significantly from the know-how, we have gained in over 25 years in different industries.

Further information about our services can be found on page 18.

Dipl.-Ing. Christian Schlegel
Managing Director

Content

PC Interfaces P 4-5
Repeaters P 6
Bridges and Gateways P 7
Analysis Tools P 8
CAN Diagnostic Tools P 9
Automotive Tools P 10-11
Embedded Platform P 12
SAE J1939 P 13
IO Modules P 14
Further Products P 15-16
CAN and FlexRay Accessories P 17
Development Services P 18

You can rely on
✓ High long-term availability
✓ 100 % product testing
✓ Fast delivery from stock
✓ High quality standard
✓ Made in Germany
PC Interfaces

for analysis and control of CAN, FlexRay, LIN and K-Line systems

IXXAT PC interfaces are used in a wide range of applications, either in test benches to connect the devices to be tested to the test computer or as a control interface in production or handling systems. In combination with the can-Analysers, the interfaces serve as a basis for a powerful CAN and FlexRay analysis system.

The drivers for Windows (VCI), Linux and real-time operating systems (ECI), included in the scope of supply, have an identical programming interface for all CAN interfaces and enable a quick and easy switch between cards without adaptation to the customer’s application. Thus the optimum CAN interface in terms of area of application, performance requirements or target unit costs can be selected at any time.

In addition to customized applications, the CAN interfaces also form the basis for our comprehensive tool chain consisting of analysis, configuration, simulation and gateway tools. All IXXAT CAN interfaces are developed, produced and tested 100% before delivery in accordance with the highest quality standards.

Software support

Windows

Every CAN interface is delivered with IXXAT’s universal “Virtual Communication Interface” (VCI) driver for Windows. This powerful driver package supports all CAN interfaces, regardless of their PC interface format, with a common application programming interface (API). Thereby applications based on the VCI API can be used with all IXXAT CAN interfaces without changing the application program.

The VCI is designed as a system server and allows simultaneous access by several applications to one or more CAN controllers of one or more PC interfaces.

User interfaces:
- C, JAVA and LabView API
- .NET API for integration into Agilent VEE
- CE, Visual Basic .NET
- DasyLab (includes drivers for IXXAT’s interfaces)
- LabWindows

The VCI CAN driver supports 32 and 64 bit Windows operating systems and also includes a simple CAN bus monitor “miniMon”, which enables the transmission and reception of CAN messages.

Linux, INtime, RTX and QNX

For use of the CAN interfaces with Linux or in real-time environments (INtime, RTX, QNX), IXXAT provides the universal “Embedded Communication Interface” (ECI) free of charge. As with the VCI, the user interface is identical for all operating systems and interface boards. Thus applications based on ECI can be used directly with all supported interfaces.

<table>
<thead>
<tr>
<th>Product</th>
<th>CAN-IB100/PCIe</th>
<th>CAN-B200/PCIe</th>
<th>CAN-IB500/PCIe</th>
<th>CAN-IB600/PCIe</th>
<th>CAN-IB120/PCIe Mini</th>
<th>iPC-I XC16/PCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC interface standard</td>
<td>PCI express (V1.1)</td>
<td>PCI express (V1.1)</td>
<td>PCI express (V1.1)</td>
<td>PCI express mini card (V1.2)</td>
<td>PCI (V2.2)</td>
<td>PCI (V2.2)</td>
</tr>
<tr>
<td>Microcontroller</td>
<td>Passive</td>
<td>32 Bit</td>
<td>32 Bit</td>
<td>Passive</td>
<td>16 Bit</td>
<td>16 Bit</td>
</tr>
<tr>
<td>Fieldbus interfaces</td>
<td>1-4 x CAN</td>
<td>1-4 x CAN</td>
<td>1-4 x LIN/K-Line optional</td>
<td>1 / 2 x CAN</td>
<td>2 x CAN</td>
<td>1 x LIN (optional)</td>
</tr>
<tr>
<td>CAN interface (controller/interface/connection)</td>
<td>CAN 2.0 A/B</td>
<td>CAN 2.0 A/B</td>
<td>CAN FD and CAN 2.0 A/B</td>
<td>CAN 2.0 A/B</td>
<td>CAN 2.0 A/B</td>
<td>CAN 2.0 A/B</td>
</tr>
<tr>
<td></td>
<td>Sub D9 plug acc. to CiA 303-1</td>
</tr>
<tr>
<td>LIN interface (interface/connection)</td>
<td>-</td>
<td>ISO 9141</td>
<td>-</td>
<td>-</td>
<td>ISO 9141</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Sub D9 plug</td>
<td>-</td>
<td>Sub D9 plug</td>
<td>-</td>
<td>Sub D9 plug</td>
<td></td>
</tr>
<tr>
<td>FlexRay interface (controller/interface/connection)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>optional (1 kV, 1 sec.)</td>
</tr>
<tr>
<td>Temperature range</td>
<td>0 ºC ... +70 ºC</td>
<td>0 ºC ... +70 ºC</td>
<td>0 ºC ... +70 ºC</td>
<td>-40 ºC ... +85 ºC</td>
<td>-20 ºC ... +70 ºC</td>
<td>-20 ºC ... +70 ºC</td>
</tr>
<tr>
<td>Power supply</td>
<td>3.3 V DC, 350 mA typ.</td>
<td>3.3 V DC, 390 mA typ.</td>
<td>3.3 V DC, 390 mA typ.</td>
<td>3.3 V DC</td>
<td>5 V DC, 100 mA typ. and 3.3 V DC, 200 mA typ.</td>
<td>3.3 V DC</td>
</tr>
<tr>
<td>Dimensions</td>
<td>approx. 65 x 105 mm</td>
<td>approx. 30 x 50.95 mm</td>
<td>approx. 89 x 124 mm</td>
</tr>
<tr>
<td>Order number</td>
<td>1.01.0231.xxxxx</td>
<td>1.01.0233.xxxxx</td>
<td>1.01.0233.xxxxx</td>
<td>1.01.0237.xxxxx</td>
<td>1.01.0237.xxxxx</td>
<td>1.01.0047.xxxxx</td>
</tr>
<tr>
<td>Low Profile:</td>
<td>1.01.0232.xxxxx</td>
<td>Low Profile: 1.01.0234.xxxxx</td>
<td>Low Profile: 1.01.0234.xxxxx</td>
<td>Low Profile: on request</td>
<td>Low Profile: on request</td>
<td>Low Profile: on request</td>
</tr>
</tbody>
</table>
ported IXAT CAN interfaces without any changes. The application interface is designed as a "C" interface and contains all necessary functions for CAN-based applications.

SAE J1939 and CANopen

For use of the CAN interfaces with CANopen or J1939 protocols, IXAT offers driver APIs that provide all protocol specific functions and thus enable quick and easy development of PC-based control and configuration applications.

FlexRay

The FR-IB100/PCIe is a low cost and powerful solution for analysis and control of FlexRay systems. With the integrated asynchronous receiver, it is also possible to analyze the start-up behavior of FlexRay systems in detail. The FR-IB100/PCIe is delivered with the VCI for FlexRay, which comes with a C-API for connection to Windows-based applications. The VCI for FlexRay also supports the FRC-EP 150.
The IXXAT topology components are established successfully in many different application areas, whether in test benches for communication system networks, in production systems or charging stations, for system protection and control of noise.

CAN repeaters
In terms of robustness, temperature range and safety, IXXAT repeaters are specially designed for use in an industrial environment. When used, the reliability of a system can be significantly increased while typically saving costs due to simpler wiring.

The CAN repeaters are used to establish a physical coupling of two or more segments of a CAN bus system. They can be used to implement tree or star topologies as well as for long drop lines. Systems connected by repeaters are independent electrical segments that can be optimally terminated in terms of signals. In addition, network segments can be electrically decoupled using a galvanically isolated repeater.

CAN bridges and gateways
The use of bridges and gateways opens up a large number of possibilities. For example, CAN systems can be implemented with a larger system expansion, devices without CAN interfaces can be connected to CAN systems or CAN systems can be coupled using different communication technologies.

CAN bridges can link two or more CAN networks that employ different CAN bit rates or protocols. At this, translation and filter rules can also be used, allowing a protocol adaptation to be carried out between the sub-networks. A bridge can thus also provide simple gateway functions. CAN bridges are appropriate for creating hierarchical networks by transferring only the information to the connected sub-networks via bridges which are relevant to the sub-network.

Topology components

for test back-ups and system extension

The IXXAT topology components are established successfully in many different application areas, whether in test benches for communication system networks, in production systems or charging stations, for system protection and control of noise.

CAN repeaters
In terms of robustness, temperature range and safety, IXXAT repeaters are specially designed for use in an industrial environment. When used, the reliability of a system can be significantly increased while typically saving costs due to simpler wiring.

The CAN repeaters are used to establish a physical coupling of two or more segments of a CAN bus system. They can be used to implement tree or star topologies as well as for long drop lines. Systems connected by repeaters are independent electrical segments that can be optimally terminated in terms of signals. In addition, network segments can be electrically decoupled using a galvanically isolated repeater.

CAN bridges and gateways
The use of bridges and gateways opens up a large number of possibilities. For example, CAN systems can be implemented with a larger system expansion, devices without CAN interfaces can be connected to CAN systems or CAN systems can be coupled using different communication technologies.

CAN bridges can link two or more CAN networks that employ different CAN bit rates or protocols. At this, translation and filter rules can also be used, allowing a protocol adaptation to be carried out between the sub-networks. A bridge can thus also provide simple gateway functions. CAN bridges are appropriate for creating hierarchical networks by transferring only the information to the connected sub-networks via bridges which are relevant to the sub-network.

<table>
<thead>
<tr>
<th>Product</th>
<th>CAN-CR200</th>
<th>CAN-CR210/FO</th>
<th>CAN-CR220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Stackable ISO 11898-2 CAN repeater</td>
<td>Stackable ISO 11898-2 to fiber optic converter</td>
<td>ISO 11898-2 CAN repeater with 4 kV galvanic isolation</td>
</tr>
<tr>
<td>CAN bus interface</td>
<td>2 x ISO 11898-2 with CAN choke</td>
<td>1 x ISO 11898-2 with CAN choke</td>
<td>2 x ISO 11898-2 with CAN choke</td>
</tr>
<tr>
<td>CAN connection</td>
<td>Sub D9 plug according to CiA 303-1</td>
<td>Sub D9 plug according to CiA 303-1</td>
<td>Sub D9 plug according to CiA 303-1</td>
</tr>
<tr>
<td>Integrated CAN bus termination</td>
<td>Switchable</td>
<td>Switchable</td>
<td>Switchable</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>CAN 1, CAN 2 (1 kV, 1 sec.)</td>
<td>CAN 1 (1 kV, 1 sec.)</td>
<td>CAN 1, CAN 2 and power supply (4 kV, 1 sec.; optional 3 kV, 3 min.)</td>
</tr>
<tr>
<td>LED indicators</td>
<td>Transmission Defect segment</td>
<td>Transmission Defect segment</td>
<td>Transmission Defect segment</td>
</tr>
<tr>
<td>Glass fiber connection</td>
<td>-</td>
<td>F-SMA or ST for duplex cable (fiber optic 50/125 μm duplex)</td>
<td>-</td>
</tr>
<tr>
<td>Baudrate</td>
<td>up to 888 kbps</td>
<td>up to 888 kbps</td>
<td>up to 888 kbps</td>
</tr>
<tr>
<td>Transmission delay</td>
<td>approx. 200 ms (equal to 40 meter bus length)</td>
<td>approx. 300 ms (equal to 60 meter bus length)</td>
<td>approx. 200 ms (equal to 40 meter bus length)</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-20 ºC ... +70 ºC</td>
<td>-20 ºC ... +70 ºC</td>
<td>-20 ºC ... +70 ºC</td>
</tr>
<tr>
<td>Power supply</td>
<td>9–32 V DC, 1.5 W typ., via screw terminals</td>
<td>9–32 V DC, 3 W typ., via screw terminals</td>
<td>9–32 V DC, 1.5 W typ., via screw terminals</td>
</tr>
<tr>
<td>Certification</td>
<td>CE, FCC</td>
<td>CE, FCC</td>
<td>CE, FCC</td>
</tr>
<tr>
<td>Housing, dimensions</td>
<td>Plastic DIN rail housing, approx. 22.5 x 100 x 115 mm</td>
<td>Plastic DIN rail housing, approx. 22.5 x 100 x 115 mm</td>
<td>Plastic DIN rail housing, approx. 22.5 x 100 x 115 mm</td>
</tr>
<tr>
<td>Order number</td>
<td>1.01.0067.44010</td>
<td>F-SMA plug 1.01.0068.45010</td>
<td>Option 3 kV, 3 min. 1.01.0067.44300</td>
</tr>
<tr>
<td>Accessories</td>
<td>T bus connector 1.04.0007.00000</td>
<td>T bus connector 1.04.0007.00000</td>
<td>T bus connector 1.04.0007.00000</td>
</tr>
</tbody>
</table>

www.ixxat.com/repeaters
An adaptation to customer specific requirements can be made by using the Application Development Kit for the CANbridge.

As an extension to the CAN bridges, CAN gateways allow access to CAN networks via other communication systems. In each case, the protocols of the connected bus systems are mapped to the other communication model.

<table>
<thead>
<tr>
<th>Product</th>
<th>CANbridge</th>
<th>CAN@net II/Generic</th>
<th>CANblue II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Configurable CAN/CAN bridge</td>
<td>CAN/Ethernet gateway with ASCII protocol and CAN-Eth-CAN bridge operation mode</td>
<td>CAN/Bluetooth GW with ASCII protocol, CAN-Bluetooth-CAN bridge operation mode</td>
</tr>
<tr>
<td>Application</td>
<td>Extension of the network dimension</td>
<td>CAN connection via Ethernet for Linux or embedded applications</td>
<td>Wireless CAN connection of Windows, Linux or embedded applications</td>
</tr>
<tr>
<td>field</td>
<td>Network segmentation</td>
<td>Network extension via CAN-Ethernet-CAN bridge</td>
<td>Flexible network connection via CAN-Bluetooth-CAN bridge</td>
</tr>
<tr>
<td>Functionality</td>
<td>Message filtering</td>
<td>Message filtering</td>
<td>Message filtering</td>
</tr>
<tr>
<td></td>
<td>Identifier conversion</td>
<td>Identifier conversion</td>
<td>Identifier conversion</td>
</tr>
<tr>
<td></td>
<td>Baudrate conversion</td>
<td>Baudrate conversion</td>
<td>Baudrate conversion</td>
</tr>
<tr>
<td>Fieldbus</td>
<td>2 x CAN</td>
<td>1 x CAN</td>
<td>1 x CAN</td>
</tr>
<tr>
<td>interfer.</td>
<td>2 x ISO 11898-2</td>
<td>ISO 11898-2</td>
<td>ISO 11898-2</td>
</tr>
<tr>
<td>CAN</td>
<td>DIN rail version via screw terminals</td>
<td>Sub D9 plug according to CiA 303-1</td>
<td>Sub D9 plug according to CiA 303-1</td>
</tr>
<tr>
<td>bus</td>
<td>Alu version via Sub D9 plug acc. to CiA 303-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>connection</td>
<td>RS232 for the device configuration</td>
<td>10/100 Mbit/s Ethernet, auto negotiation, auto crossover, RJ45 plug</td>
<td>Bluetooth spec. V2.1, Class 1 / +17 dBm</td>
</tr>
<tr>
<td>further</td>
<td>Galvanic isolation optional</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>interfaces</td>
<td>LED indicators Power, CAN, Serial</td>
<td>Power, CAN, Ethernet, CPU</td>
<td>CAN, Bluetooth, Mode</td>
</tr>
<tr>
<td></td>
<td>Temp. range</td>
<td>-20 °C ... +70 °C</td>
<td>-40 °C ... +85 °C</td>
</tr>
<tr>
<td></td>
<td>Power supply</td>
<td>9 - 36 V, 1.5 W</td>
<td>9 - 30 V DC, 0.6 W</td>
</tr>
<tr>
<td></td>
<td>Housing, dimensions</td>
<td>DIN rail housing approx. 110 x 75 x 22 mm</td>
<td>approx. 82 x 64 x 26 mm</td>
</tr>
<tr>
<td></td>
<td>Aluminum housing approx. 100 x 85 x 32 mm</td>
<td>DIN rail housing approx. 22.5 x 100 x 115 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configuration SW 9x/Me/NT/2000i/XP/Vista/Win7</td>
<td>Via integrated web server</td>
<td></td>
</tr>
<tr>
<td>Certification</td>
<td>CE, FCC, CSA/UL</td>
<td>CE, FCC, Telec</td>
<td></td>
</tr>
<tr>
<td>Order number</td>
<td>1.01.0121.xxxxx</td>
<td>1.01.0086.10201</td>
<td>1.01.0126.12000</td>
</tr>
<tr>
<td></td>
<td>1.01.0120.22020</td>
<td></td>
<td>1.01.0126.12001 (ext. antenna version)</td>
</tr>
<tr>
<td>Accessories</td>
<td>Application Development Kit 1.03.0270.00000</td>
<td></td>
<td>External antenna 1.04.0085.00001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Screwable antenna foot 1.04.0085.0002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Magnetic antenna foot 1.04.0085.0000</td>
</tr>
</tbody>
</table>

www.ixxat.com/bridges
The IXXAT analysis and diagnostic tools enable a fast and detailed insight into the system to be analyzed. CAN analysis tools are used for testing and simulation of individual network devices and as a tool to analyze complete networks during the development, start up, service and maintenance phases of a CAN network.

canAnalyser for CAN, CAN-FD and LIN

The canAnalyser is a powerful, versatile tool for development, testing and maintenance of CAN, CAN-FD and LIN networks. The software package is based on a modular concept and employs special features that offer exceptional openness and extensibility.

In the standard version, the analyser offers functions covering many areas of application, such as transmission of individual messages/signals and sequences, reception and interpretation of messages/signals and display of statistical data. Signals are managed through databases and can be directly defined using the editor or imported via import filters. As import filters the widely spread CANdb format, FIBEX and DIM are supported. From the databases, an export to FIBEX and CANdb data files is supported.

The canAnalyser is based on the VCI driver from IXXAT and can be used with all PC interfaces offered by IXXAT. The new canAnalyser allows to assign a measurement configuration to several IXXAT PC interfaces. Such a configuration can also be easily transferred to other computers and adapted to the local hardware.

Additional functions are provided by optional modules for the canAnalyser, such as the protocol-specific display of messages, e.g. in CANopen or J1939 based systems, or the support of other bus systems like LIN. Customized functions can be easily integrated via an open .NET programming interface in the form of individual modules.

The canAnalyser is offered as bundle with additional modules and PC interfaces at very attractive prices.

Diagnostic tools

By using IXXAT diagnostic tools, CAN systems can be analyzed and evaluated in operation and during installation. The tools allow long-term recording of the transmitted data and errors as well as detection of signal, transmission and wiring errors. Based on the analysis results, quick and easy localization and elimination of errors can be enabled or an existing system can be optimized to achieve higher reliability.

The CANcheck is a mobile, robust handheld device offered by IXXAT for maintenance and commissioning CAN systems. With this tool the wiring, the line length and the termination resistors as well as the quality of the transmitted signals can be tested.

<table>
<thead>
<tr>
<th>Product</th>
<th>canAnalyser 3.0</th>
<th>CANopen Module</th>
<th>SAE J1939 Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>PC based analyzing tool for CAN, CAN-FD and LIN systems</td>
<td>CANopen extension for canAnalyser</td>
<td>SAE J1939 extension for canAnalyser</td>
</tr>
<tr>
<td>Included functions/modes</td>
<td>Reception, Transmission, Trace, Statistic, Sequencer and Signal, Graphic and Transmission module for signals</td>
<td>Interpretation and display of CAN messages in accordance with the CANopen standard (CIA 301, ...)</td>
<td>Interpretation and display of CAN messages in accordance with the SAE J1939 standard</td>
</tr>
<tr>
<td>Features</td>
<td>Online monitoring of bus traffic</td>
<td>- Message display in scroll or overwrite mode</td>
<td>- Message display in scroll or overwrite mode</td>
</tr>
<tr>
<td>LIN option</td>
<td>Transmission of single-shot or cyclic messages and message sequences</td>
<td>- Import of EDS, DCF, XDD files</td>
<td>- Interpretation of application, diagnosis and connection management messages</td>
</tr>
<tr>
<td>OS</td>
<td>XP/Vista/Windows 7/Windows 8</td>
<td>Export to CSV or clipboard</td>
<td>- Change highlighting and receive statistics</td>
</tr>
<tr>
<td>Order number</td>
<td>1.02.0133.00000</td>
<td>Change highlighting and receive statistics</td>
<td>- Change highlighting and receive statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering by node number and message type</td>
<td>- Filtering by PGN (Parameter Group Number) destination and source address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interpretation of all relevant protocols (SDD, ISS, EMCY, SYNC...) as well as PDO content</td>
<td>- Parallel file recording of the interpreted data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Parallel file recording of the interpreted data</td>
<td>- Export and import of the module configuration and filter settings</td>
</tr>
</tbody>
</table>

www.ixxat.com/cananalyser
Operation of the device is intuitive via testing processes controlled by a display and keypad. All test results can be saved and printed out on the PC for logging.

The CANcheck comes with calibration documents and therefore can be used as test equipment for manufacturing and assembly according to ISO 9001.

The **CAN-Bus-Tester (CBT)** and the CANobserver enable detailed analysis of the signals and of the transmission errors occurring in the CAN systems. The CBT is connected to the PC via USB and operated with a Windows program. The software enables online analysis with numerous test functions.

<table>
<thead>
<tr>
<th>Product</th>
<th>CANcheck</th>
<th>CAN-Bus-Tester (CBT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Hand-held installation tester for CAN systems for commissioning, troubleshooting and maintenance</td>
<td>Powerful tool for the CAN bus physics and protocol analysis</td>
</tr>
<tr>
<td>Functionality</td>
<td>Test of wiring, terminators, cable length, impedance</td>
<td>Analysis of the signal quality (levels, slopes, faults)</td>
</tr>
<tr>
<td></td>
<td>Measurement of signal level and bus load</td>
<td>Integrated oscilloscope</td>
</tr>
<tr>
<td></td>
<td>Determination of the transmitted identifiers and display of reception frequency</td>
<td>Powerful trigger functions</td>
</tr>
<tr>
<td></td>
<td>Display of error frames per time unit</td>
<td>Monitoring of bus status, bus load, error messages</td>
</tr>
<tr>
<td></td>
<td>Auto. baudrate detection</td>
<td>Wiring test</td>
</tr>
<tr>
<td></td>
<td>Operation via LCD display/keypad</td>
<td>Integrated CAN monitor for transmission and reception</td>
</tr>
<tr>
<td></td>
<td>CANopen mode: Message display according to the node number</td>
<td>Automatic baudrate detection</td>
</tr>
<tr>
<td></td>
<td>Storage of measurement results and transmission via USB</td>
<td>Creation of inspection reports</td>
</tr>
<tr>
<td>Display</td>
<td>LCD display with backlight</td>
<td></td>
</tr>
<tr>
<td>Fieldbus interfaces</td>
<td>1 x CAN</td>
<td>1 x CAN</td>
</tr>
<tr>
<td>CAN bus interface</td>
<td>1 x ISO 11898-2</td>
<td>ISO 11898-2</td>
</tr>
<tr>
<td>CAN connection</td>
<td>Sub D9 plug according to CiA 303-1</td>
<td>Sub D9 plug according to CiA 303-1 as well as various adapter cables</td>
</tr>
<tr>
<td>Further interfaces</td>
<td>USB 2.0 for PC based control and message download; BNC trigger output for the oscilloscope</td>
<td>USB 2.0 for PC connection; BNC trigger output for the oscilloscope</td>
</tr>
<tr>
<td>Temperature range</td>
<td>0 °C ... +50 °C</td>
<td>+5 °C ... +40 °C</td>
</tr>
<tr>
<td>Power supply</td>
<td>4 x 1.5 V AAA battery or USB</td>
<td>9 - 36 V DC; Power supply included</td>
</tr>
<tr>
<td>Housing, dimensions</td>
<td>approx. 116 x 160 x 34 mm</td>
<td>approx. 40 x 134 x 170 mm</td>
</tr>
<tr>
<td>Software for operation</td>
<td>Also possible via terminal program</td>
<td>Win XP</td>
</tr>
<tr>
<td>and configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Order number</td>
<td>1.01.0097.00000</td>
<td>1.04.0402.00000 (also for rental)</td>
</tr>
<tr>
<td>Accessories</td>
<td>Add-ons for higher layer protocols (CANopen, DeviceNet, SAE J1939) and monitor</td>
<td></td>
</tr>
</tbody>
</table>
Residual bus simulation for FlexRay and CAN systems

The residual bus simulation provides a simulation environment for one or more control devices that can be tested independently of other nodes. This includes the generation of the message traffic that is necessary for the device to be tested and the reaction on messages transmitted by the control devices under test.

The residual bus simulation is based on the description of the communication network via a CANdb or Fibex file. The description file is imported and analyzed by the IXXAT RBS configuration software. With a few logically consecutive steps, the user can graphically configure the residual bus simulation.

The configuration software then generates the actual residual bus simulation including signal-specific CRCs or alive counter.

An integrated cross-compiler translates the residual bus simulation into a file which can run on the target hardware. After transfer to the IXXAT Embedded platform, the RBS can be performed without a PC connection in real time.

In addition, it is possible to extend the RBS with user-specific elements within pre-generated “user code skeletons”. Thereby it is possible to react to specific signals and, if required, send a message on the bus in the same cycle.

XCPonEthernet

With the XCPonEthernet extension it is possible to control the residual bus simulation via a standardized protocol or to evaluate communication data. For this purpose, all signals of the CANdb and/or code skeletons are compiled in an A2L file. This A2L file can then be imported by other commercial software solutions. Thereby it is possible to display all signals present on the bus and to manipulate all signals sent by the residual bus simulation. An extension of existing logger solutions with further FlexRay and CAN interfaces is equally as possible as the defined stimulation of transmission signals at a physical level.

HIL signal manipulation

Based on a FlexRay/CAN residual bus simulation and the XCPonEthernet extension, it is possible to manipulate the signals transmitted in a defined way.

This includes e.g. on/off switching of signals for a defined time or number of cycles, transmission of defined substitute values for switched off signals and the defined corruption of CRCs and Alive counters for all signals transmitted by the RBS.

The signal manipulation can be controlled via user code, the Gateway or XCPonEthernet.

Gateway

With the Gateway Configuration Tool, gateway solutions can be implemented quickly and easily. The software is available in different versions and for different hardware platforms. The configuration can be made very easily via drag&drop and allows the stand-alone operation on the target platform.

In the simplest and free available version, the Gateway Configuration Tool can be used for the configuration of pure CAN/CAN gateways. Configuration can be carried out on the basis of existing CANdb bus description files or manually. Mapping of messages of a source bus to a target bus is carried out via drag&drop on the graphical interface of the Gateway Configuration Tool. The configuration thus created can be loaded to the IXXAT CANbridge or an Embedded Platform from IXXAT and can be executed stand-alone.

For complex gateways, the full version of the Configuration Tool is required that also enables creation of signal-based gateways. Depending on the requirements the gateway can run stand-alone or based on the residual bus simulation. Running the gateway based on the RBS, the transmission data is hand-over by the gateway to the RBS which is responsible for the timely transmission.

Mapping is carried out by drag&drop, as with the CAN/CAN gateway. With the signal-based gateway it is possible to combine signals of various source messages to form a target message. Transmit triggers and possible default values can be freely selected.

If the signal description of the source and target signal do not match, an automatic signal transformation is generated optional. This ensures that the interpretation of the source and target signal is identical. Signal-based gateways will run on IXXAT’s Embedded Platforms as target hardware. In addition to FlexRay and CAN the following described protocols are supported depending on the used target hardware.

Generic Ethernet

In addition to the built-in CAN interfaces, it is possible to define up to 16 “virtual CAN on Ethernet” interfaces on all IXXAT Embedded Platforms. At this, the IXXAT CAN@net protocol is used, enabling the reception and transmission of CAN messages on up to 16 different IP addresses. The Gateway Configurator generates a CANdb bus description file for each virtual CAN bus. The CANdb allows the remote station to interpret the data stream similar to a real CAN bus. Depending on the requirements, the virtual CAN bus can directly be interpreted by the control PC, analyzed via canAnalyzer, or via CAN@net II converted to CAN.

SDHC Card

In conjunction with the FRC-EP170/190 devices, it is possible to use an SDHC card as a virtual bus within the gateway. Mappings can be defined from and to all bus systems. The assigned messages or signals are recorded in MDF4, ASCII or canAnalyzer format on the memory card, furthermore it is possible to record data parallel to the gateway or bus simulation operation. Also, records can be sent in the correct time order.

www.ixxat.com/flexray
Product

FlexRay/CAN Resid. Bus Simulation

Description
Residual bus simulation for FlexRay and CAN systems based on the IXXAT Embedded Platform

Features
- Generation of FlexRay and CAN messages as well as reaction to messages received
- Provision of two cold starter nodes for starting up a FlexRay system
- PC controlled and stand alone operation
- Easy configuration based on FIBEX or CANdb file data
- Signal manipulation for all signals transmitted by the RBS
- Stimulation via XCPonETHERNET and commercial third-party software

Order number
FlexRay and CAN Residual Bus Simulation 1.02.0243.00002
On the target device a corresponding runtime license is required

Gateway Configuration Tool

Development Tool

Eclipse-based development environment for implementation of specific requirements on the embedded platform

Order number
Gateway Configuration Tool 1.02.0244.00000
On the target device a corresponding runtime license is required

Order number
Development Tool: on request
No runtime license is required on the target device for pure Linux user mode applications

FDX
The Fast Data Exchange protocol is a communication interface based on Ethernet and offers an affordable alternative to XCPonEthernet to access physical signals. Main advantage is that FDX does not require a complex communication stack and therefore can be implemented very easily on any target platform. The Gateway Configuration Tool generates an XML description file for the FDX interface which can be read and used to interpret the Ethernet data flow.

EtherCAT
IXXAT offers an EtherCAT expansion for the FRC-EP190. This allows connection of the automotive part with the industrial environment in test benches. Using the Gateway Configuration Tool, the user selects the signals from the vehicle or control unit which have to be stimulated or analyzed on EtherCAT. The EtherCAT configuration can be read directly from the device or provided by an ESI file which is generated by the Gateway Configuration Tool.

Development Tool
For the FRC-EP170/190, an Eclipse-based development environment is available for PCs. It can be used to extend the IXXAT applications or to develop own applications for the IXXAT embedded platform. The development package includes a comfortable editor, a cross-compiler as well as a high-level language debugger. The developed Linux based applications can be executed or can run stand-alone on the IXXAT embedded platforms.
Embedded Platform

for use in vehicles and test benches

The IXXAT Embedded Platform has been proven in all applications where several bus systems must be merged within one device which has its own computing power. At this, the PC is only required to setup the device or for data stimulation and visualization. The intelligence, for example to handle the transport protocols, is available on the Embedded Platform. The Embedded Platform has a very powerful microprocessor and uses a real-time operating system. This allows to set-up stand alone applications, e.g. to connect several vehicle bus systems via a gateway without requiring a control PC. The required functionality can be activated on the device using appropriate runtime licenses.

Test bench
Within test benches, individual parts of a vehicle - e.g. electronic servo steering - can be tested isolated from the remaining vehicle. Especially FlexRay requires to locate the Embedded Platform nearby the device under test, to keep the interference with the bus topology as low as possible. For operation, most of the control units require - from their point of view - a simulation of the remaining vehicle bus system. Using the appropriate IXXAT tools, the Embedded Platform can be configured without own coding effort and provides the desired signals on the best possible interface for the test bench computer.

Functional simulation
The connected control units sometimes require a real time response on specific events. The response from a connected PC is often too slow or transmission times are not accurate definable. In these cases, functional simulations can be used on the devices, which allow realistic and very timely reactions.

Analysis
The analysis of the communication buses is another application of the Embedded Platform. This can be either the pure interface function with the corresponding analysis software on the PC or the preprocessing of the data received to only send the desired signals on the best possible interface for the test bench computer.

Development platform
For most applications, IXXAT offers the appropriate configuration and analysis tools for the Embedded Platform. Nevertheless, there are very specific applications where it is necessary to provide an accurate customized solution. The open architecture of the IXXAT Embedded Platform allows providing adaptations or extensions very quickly, if necessary this can also be performed by the user based on the software development kit.

As an alternative to the Embedded Platform IXXAT offers a pure PC-based solution for FlexRay analysis based on the FR-IB 100 interface (see PC interfaces).

<table>
<thead>
<tr>
<th>Product</th>
<th>FRC-EP150</th>
<th>FRC-EP190</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC connection</td>
<td>Ethernet 10/100 MBit/s</td>
<td>Ethernet 10/100 MBit/s or USB 2.0</td>
</tr>
<tr>
<td>Interfaces</td>
<td>- 1 x FlexRay A/B channel</td>
<td>- Up to 2 x FlexRay A/B channel</td>
</tr>
<tr>
<td></td>
<td>with each 10 MBit/s</td>
<td>with each 10 MBit/s</td>
</tr>
<tr>
<td></td>
<td>- 4 x CAN</td>
<td>- Up to 8 High-Speed CAN interfaces</td>
</tr>
<tr>
<td></td>
<td>- 2 x High-Speed CAN</td>
<td>- Up to 2 Low-Speed CAN interfaces</td>
</tr>
<tr>
<td></td>
<td>- 2 x High-Speed and Low-Speed</td>
<td>- Up to 2 CAN-FD interfaces</td>
</tr>
<tr>
<td></td>
<td>CAN, via SW switchable</td>
<td>- 2 x LIN interface</td>
</tr>
<tr>
<td></td>
<td>- 4 Digital output</td>
<td>- 2 x K-Line interface</td>
</tr>
<tr>
<td></td>
<td>- 2 Digital input</td>
<td>- 1 x RS422 interface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Up to 4 x diff. analog input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(12 Bit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Up to 4 digital input (max. 34 V)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Up to 4 digital output (max 34 V, 1 A)</td>
</tr>
<tr>
<td></td>
<td>Optional: EtherCAT Slave In/Out</td>
<td></td>
</tr>
<tr>
<td>Functionality</td>
<td>- Cold start capability via two</td>
<td>- Hibernate Mode</td>
</tr>
<tr>
<td></td>
<td>FlexRay nodes</td>
<td>- Real-time clock</td>
</tr>
<tr>
<td></td>
<td>- All interfaces galvanically</td>
<td>- Wakeup via interfaces and timer</td>
</tr>
<tr>
<td></td>
<td>isolated</td>
<td>- Level and error frame monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>on up to two CAN interfaces</td>
</tr>
<tr>
<td>Connectors</td>
<td>- All connectors with Lemo plugs</td>
<td>- Cold start capability via two</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FlexRay nodes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Optional remote control</td>
</tr>
<tr>
<td>Expansion slots</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>and extensions</td>
<td>- SDHC slot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 2 int. expansion slots (FlexRay,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAN, CAN-FD, EtherCAT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Prepared for WLAN, Bluetooth,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GSM/SPS</td>
<td></td>
</tr>
<tr>
<td>Temp. range</td>
<td>-40 °C ... +70 °C</td>
<td>-40 °C ... +80 °C</td>
</tr>
<tr>
<td>Power supply</td>
<td>6.5 - 50 V DC; 400 mA typ. at 12 V</td>
<td>6 - 36 V DC; 420 mA typ. at 12 V</td>
</tr>
<tr>
<td>Dimensions</td>
<td>158 x 140 x 36 mm</td>
<td>182 x 113 x 50 mm</td>
</tr>
<tr>
<td></td>
<td>1.01.0094.00020</td>
<td>1.01.0094.00020</td>
</tr>
<tr>
<td></td>
<td>- RBS Runtime Full License: 1.02.0245.00000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- GWV Runtime License Bundle: 1.02.0245.00005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- FlexRay Runtime License Bundle: 1.02.0245.000006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- XCP Runtime License: 1.02.0245.00008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- IEEE1588-V1 Runtime License: 3.02.0245.00009</td>
<td></td>
</tr>
</tbody>
</table>

www.ixxat.com/flexray
IXXAT offers a comprehensive, cost-effective tool chain for SAE J1939 applications. This ranges from the protocol software, analysis and configuration tools to the Windows API based test destination device. Thanks to a central definition of all relevant parameters based on a database, header files can be generated for the protocol software and configuration files for the Windows API and canAnalyser. This avoids errors due to inconsistent data.

In addition, IXXAT offers its SAE J1939 protocol software for a large number of platforms. This reduces the amount of adaptation required during implementation and thus considerably shortens the time-to-market.

Protocol software

With the cross-platform SAE J1939 Protocol Software J1939 devices can quickly and easily be developed. The software is available for various CPUs and in three variants: "Micro" for 8-bit systems, "Single Channel" for solutions with one CAN channel and "Multi Channel" for solutions with more than one channel. In addition, extension packages for NMEA 2000 and ISO 15765-2 are offered.

The SAE J1939 CAN Driver serves as the basis for the J1939 protocol software (single/multi channel) and also contains the abstraction modules for the CPU and operating system. The driver is available for various CAN controllers.

Tools and APIs

With the SAE J1939 Designer, IXXAT offers an editor and code generator for J1939 projects. It is used to produce J1939 network descriptions and to generate code and configuration files for the various IXXAT J1939 products.

The SAE J1939 API is a Windows DLL based on the IXXAT J1939 protocol software for the development of SAE J1939 service and test applications. The DLL offers convenient interfaces at the signal level for the development of applications in C/C++ or Python.

With the optional SAE J1939 Module the canAnalyser allows the interpretation and display of CAN messages according to the SAE J1939 standard (see also page 8).

Product

<table>
<thead>
<tr>
<th>Description</th>
<th>SAE J1939 Protocol Software</th>
<th>SAE J1939 API for Windows</th>
<th>SAE J1939 Designer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software package for the development of J1939 devices</td>
<td>DLL for the development of J1939 service and test applications</td>
<td>Editor and code generator for J1939 projects</td>
<td></td>
</tr>
</tbody>
</table>

Included functions

- Transmission and reception of application specific messages (confirmed and unconfirmed)
- Processing of the J1939 transport protocols for large data blocks (message/node oriented)
- Simultaneous communication with multiple nodes
- Support of the "address claiming" procedure
- Cyclical transmission and reception of messages with timeout monitoring

Optional:

- J1939 CAN driver
- Extensions: ISO 15766-2, NMEA2000, Diagnostics

Order number

- Single Channel Version: 1.02.0351.00000
- Multi Channel Version: 1.02.0351.00001
- Micro Version: 1.02.0286.JTDC
- J1939 CAN Driver: 1.02.0350.00001
- ISO 15766-2 Extension: 1.02.0352.00000
- NMEA2000 Extension: 1.02.0353.00000
- Diagnostics Ext. (J1939-73): 1.02.0354.00000

1.02.0287.00000

1.02.0360.00000
IO Modules

Universal I/O gateways for CAN, CANopen and EtherCAT systems

With CANio 250/500 and EtherCAT I/O, IXXAT offers three modules enabling the quick and easy connection of analog and digital input and output signals to CAN, CANopen and EtherCAT systems – whether in experimental setups, test benches or vehicles.

An important key feature of the modules are the inputs and outputs for digital and analog (only CANio 500 and EtherCAT I/O) signals, which can be flexibly configured. The analog interfaces provide a precise 12 bit resolution.

A special focus, during the development of the CANio 250/500, was the device operability within CANopen and also standard CAN systems. For this reason, the CANio 250/500 was designed as a self-starting CANopen slave, with all important parameters, such as Node-ID, sampling rates for the analog inputs or voltage range of the analog outputs, stored as default values on the device. This enables the devices to operate directly after start up without further settings in accordance with basic CAN operation.

The individual configuration of the CANio 250/500 for different applications can be done either by loading configuration data via a CANopen master or by sending configuration messages in a pure CAN network or offline via the free CANio configuration tool. Configurations that have been created with the CANio configuration tool can be saved as a project and on customer request preinstalled on ordered devices before delivery.

The configuration of the EtherCAT I/O module is performed by using an EtherCAT master with a special XML configuration file (ESI file).

All three devices are delivered in a rugged aluminum housing with a wide power supply voltage and temperature range allowing for easy integration into existing applications in the industrial and automotive area.

Beside a standard version with aluminum housing, IXXAT offers the IO modules also as “plug-in” versions, which can be, due to the small footprint, easily integrated into customer specific devices.

CANio Application Development Kit (ADK)

For the simple development of customized applications on the CANio 250/500

As a standard product, the CANio 250/500 represents an I/O gateway implementation in which the analog and digital inputs/outputs can be queried or triggered via CAN messages. The Application Development Kit enables creation of custom device applications with customer-specific functionality in the C programming language. Industrial controls or vehicle control devices can therefore be simply implemented without own hardware.

The CANio ADK contains all drivers required for communication via the CAN bus and for triggering the various inputs and outputs, which allows development of custom applications even without specific hardware know-how.

The drivers are delivered as a binary library together with a comprehensive C-source demo application. The demo application demonstrates the usage of the various functions and can be very easily extended according to individual requirements.

As development platform an evaluation kit of the CANio 250/500 is included in the scope of supply. Together with a development environment, available for free, and a low-cost hardware debugging solution, custom applications can thus be created, uploaded to the target and verified. On completion of the test and verification phase, the application can be loaded to standard CANio 250/500 devices. This is carried out via the CAN bus with the aid of the CANio configuration tool and the bootloader permanently installed on the devices.

We will be pleased to develop adapted software solutions for customers based on the CANio 250/500. The custom software is delivered with documentation that allows further modification by the user.

Product

<table>
<thead>
<tr>
<th>CANio 250 ADK</th>
<th>CANio 500 ADK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Package for the easy development of customized applications on the CANio 500 and CANio 250</td>
</tr>
<tr>
<td>Content of delivery</td>
<td>CANio evaluation kit, I/O drivers, boot loader, demo application, Programming manual</td>
</tr>
<tr>
<td></td>
<td>The development environment and the debugger are not included in the scope of delivery</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Order number</td>
<td>CANio500 ADK: 1.02.0098.00000</td>
</tr>
<tr>
<td></td>
<td>CANio250 ADK: 1.02.0099.00000</td>
</tr>
</tbody>
</table>

CAN protocols

- CAN, CANopen

CAN bus interface

- ISO 11898-2

Galv. CAN isolation

- yes (500 V DC)

IE interface

- -

Digital inputs

- Up to 16 x + clamp 15 (5 V CMOS compatible)

Digital outputs

- Up to 16 x, max. 30 mA, 5 V CMOS signal levels

Analog inputs

- -

Analog outputs

- -

I/O's

- -

Further interfaces

- 2 user programmable LEDs
- Measurement of power supply

Temperature range

- -40 °C to +70 °C

Power supply

- 6-32 V

Types of plugs

- CAN: D-SUB-9
- I/O: D-SUB-9

Protection class

- IP42

Dimensions

- 75 x 82 x 32 mm

Order number

- 1.01.0099.00000

Customer specific solutions

Based on our years of experience, we also work for our customers to develop solutions that, in terms of interfaces, construction, and protocols supported, are adapted optimally to customer requirements.

- Specific form factor, housing
- Analog in-/outputs
- Digital in-/outputs
- CAN, CANopen
- SAE J1939, DeviceNet
- Real-time Ethernet (e.g. EtherCAT)
- -
Further Products

Solutions for test benches and production automation

IXXAT offers a wide range of solutions for CAN and real-time Ethernet in the industrial sector.

EtherCAT Master Protocol Software
IXXAT offers an EtherCAT Master software package for a wide variety of platforms enabling the development of controls in EtherCAT-based systems.

The EtherCAT Master software complies with ETG.1000 supporting CAN Application over EtherCAT (CoE), Ethernet over EtherCAT (EoE) and Distributed Clock (DC). The EtherCAT Master Stack is specially optimized for operation in embedded operating systems (or real-time operating systems) and is characterized by its modular structure, its high performance with low CPU load and low memory requirement.

Due to the support of standard Ethernet controllers, no other special hardware is required. The interfaces of the individual modules are „open“, which means that sub-components can be easily replaced if required and adapted to the relevant requirements.

The EtherCAT Master Stack is directly available for many different target systems, but can also be easily ported to any embedded operating system. If required, IXXAT offers implementation and adaptation as a service.

EtherCAT Analyser
The EtherCAT Analyser enables optimization of the system functions – comparable with the IXXAT Analysers for CAN and FlexRay. Due to the use of the EtherCAT Analyser it is possible to ensure that your EtherCAT system is operated continuously and with optimum efficiency.

EtherCAT Slave Test Center (AT-STC)
The EtherCAT Slave Test Center is aimed mainly at the vendors of EtherCAT Slave devices for carrying out tests. The AT-STC is used typically during the development of the Slave software and for quality assurance in production.

www.ixxat.com/ethercat

...continued on page 16
Further Products

from page 15...

CANopen Protocol Software
To implement CANopen in automotive devices and test equipment, IXXAT offers optimized protocol software packages for a large number of microcontroller platforms.

In addition to the standard CANopen Protocol Software for the implementation of CANopen Slave or simple Master devices, specific software packages, such as the CANopen Manager Software for complex manager devices (e.g. IEC 61131 programmable controls) or the CANopen Real-Time Software for use with real-time operating systems are available.

The software packages offered by IXXAT are characterized by their high modularity and scalability, which enable optimum adaptation to customer requirements. In this way, both simple applications can be implemented with extremely low resources and complex applications with a comprehensive scope of functions.

CANopen APIs
For the development of Windows PC-based applications, IXXAT offers the CANopen Master API and the CANopen Manager API. The Master API provides all CANopen relevant functions for the development of control, service and test programs. In addition, complex PC-based control solutions can be implemented with the Manager API.

www.ixxat.com/canopen

Complete control solution for EtherCAT and CANopen
With the IXXAT Econ 100 we provide a complete control solution for CAN- and EtherCAT-based systems. The optimized system architecture of the IXXAT Econ 100 enables the device to control fast networks by having also a very compact design with many expansion possibilities.

Special ADKs enable furthermore the quick and easy adaptation to different application fields, whether data acquisition, gateway applications or the control of test systems.

www.ixxat.com/econ

Additional information about Ethernet and CAN solutions is available in the IXXAT catalog "Industry" or at www.ixxat.com or call IXXAT for assistance with your application.

CAN Accessories

Termination Resistors and Cables

<table>
<thead>
<tr>
<th>Product</th>
<th>Sub-D9 Connector with Termination</th>
<th>CAN Termination</th>
<th>CAN Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug/Sockets</td>
<td>Sub-D9 Male/Female</td>
<td>Sub-D9 male</td>
<td>Sub-D9 female</td>
</tr>
<tr>
<td>Termination</td>
<td>120 Ohm</td>
<td>120 Ohm</td>
<td>120 Ohm</td>
</tr>
<tr>
<td>Further information</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Order number</td>
<td>1.04.0075.03000</td>
<td>1.04.0075.02000</td>
<td>1.04.0075.01000</td>
</tr>
</tbody>
</table>

* Customer specific length on request.

FlexRay Accessories

Cables for the FRC-EP150

<table>
<thead>
<tr>
<th>Product</th>
<th>FlexRay 1:1 Cable</th>
<th>FlexRay 1:1 Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug/Sockets</td>
<td>Lemo plug (5 pins, type F08.08.305) to Sub-D9 socket and Sub-D9 plug</td>
<td>Lemo plug (5 pins, type F08.08.305) to Sub-D9 socket</td>
</tr>
<tr>
<td>Dimensions</td>
<td>2 m</td>
<td>2 m</td>
</tr>
<tr>
<td>Order number</td>
<td>1.04.0092.00001 - With open ends</td>
<td>1.04.0092.00000 - With open ends</td>
</tr>
</tbody>
</table>

Cables for the FRC-EP190

<table>
<thead>
<tr>
<th>Product</th>
<th>FlexRay 1:1 Cable</th>
<th>Double CAN Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug/Sockets</td>
<td>D-SUB-HD15 socket to D-SUB9 socket</td>
<td>D-SUB9 socket (double CAN) to 2 x D-SUB9 plug (single CAN)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>1.5 m</td>
<td>1 m</td>
</tr>
<tr>
<td>Order number</td>
<td>1.04.0089.00102</td>
<td>1.04.0089.00201</td>
</tr>
</tbody>
</table>

www.ixxat.com/canopen

www.ixxat.com/econ

www.ixxat.com/industry

CANopen Protocol Software
To implement CANopen in automotive devices and test equipment, IXXAT offers optimized protocol software packages for a large number of microcontroller platforms.

In addition to the standard CANopen Protocol Software for the implementation of CANopen Slave or simple Master devices, specific software packages, such as the CANopen Manager Software for complex manager devices (e.g. IEC 61131 programmable controls) or the CANopen Real-Time Software for use with real-time operating systems are available.

The software packages offered by IXXAT are characterized by their high modularity and scalability, which enable optimum adaptation to customer requirements. In this way, both simple applications can be implemented with extremely low resources and complex applications with a comprehensive scope of functions.

CANopen APIs
For the development of Windows PC-based applications, IXXAT offers the CANopen Master API and the CANopen Manager API. The Master API provides all CANopen relevant functions for the development of control, service and test programs. In addition, complex PC-based control solutions can be implemented with the Manager API.

www.ixxat.com/canopen

Complete control solution for EtherCAT and CANopen
With the IXXAT Econ 100 we provide a complete control solution for CAN- and EtherCAT-based systems. The optimized system architecture of the IXXAT Econ 100 enables the device to control fast networks by having also a very compact design with many expansion possibilities.

Special ADKs enable furthermore the quick and easy adaptation to different application fields, whether data acquisition, gateway applications or the control of test systems.

www.ixxat.com/econ

Additional information about Ethernet and CAN solutions is available in the IXXAT catalog "Industry" or at www.ixxat.com or call IXXAT for assistance with your application.
<table>
<thead>
<tr>
<th>CAN Cable</th>
<th>CAN Adapter Cable</th>
<th>CAN Y Cable</th>
<th>T-Bus Connector</th>
<th>Glass Fiber Cable F-SMA</th>
<th>Glass Fiber Cable ST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub D9 male to female</td>
<td>RJ45 plug to SUB D9 plug</td>
<td>Sub D9 socket to socket/plug</td>
<td>-</td>
<td>F-SMA; Preassembled with two plugs per side</td>
<td>ST; Preassembled with two plugs per side</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 m</td>
<td>20 cm</td>
<td>22 cm</td>
<td>2 m</td>
<td>2 m</td>
<td>2 m</td>
</tr>
</tbody>
</table>

1-to-1 connection with shielding

<table>
<thead>
<tr>
<th>Set of two cables</th>
<th>1-to-1 connection</th>
<th>T-Bus connector for creating star couplers in conjunction with the IXXAT CAN repeaters</th>
<th>Duplex cable; Wave length 820 nm; Glass fiber 50/125 μm; Attenuation 3 dB/km</th>
<th>Duplex cable; Wave length 820 nm; Glass fiber 50/125 μm; Attenuation 3 dB/km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.04.0076.00180</td>
<td>1.04.0074.01000</td>
<td>1.04.0076.00001</td>
<td>1.04.0073.00000</td>
<td>1.04.0003.01012</td>
</tr>
</tbody>
</table>

CAN 1:1 Cable

<table>
<thead>
<tr>
<th>CAN T Cable</th>
<th>Trigger Cable</th>
<th>Trigger Cable</th>
<th>Ethernet Cross Cable</th>
<th>Power Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lemo plug (8 pins, type FGC.18.308) to Sub-D9 plug</td>
<td>Lemo plug (8 pins, type FGC.18.308) to two Sub-D9 plugs</td>
<td>Lemo plug (8 pins, type FGB.18.308) to 5 banana plugs</td>
<td>Lemo plug (8 pins, type FGJ.1B.302) to 4 mm banana plugs</td>
<td>Lemo plug (2 pins, type FGJ.1B.302) to two 4 mm banana plugs</td>
</tr>
<tr>
<td>1 m / 3 m</td>
<td>1 m</td>
<td>2 m</td>
<td>2 m</td>
<td>3 m</td>
</tr>
<tr>
<td>1.04.0093.00000 - 1 m length</td>
<td>1.04.0093.00003 - 3 m length</td>
<td>1.04.0093.00007</td>
<td>1.04.0094.00001</td>
<td>1.04.0090.00001</td>
</tr>
</tbody>
</table>

Remote/Debug Cable

<table>
<thead>
<tr>
<th>Power Cable</th>
<th>FlexRay/IO Breakout Box</th>
<th>CAN/LIN Breakout Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 pin Binder socket [Power] to 3 x 4 mm banana plugs</td>
<td>FRC-EP190 connection via HD-DSub15</td>
<td>FRC-EP190 connection via DSub9</td>
</tr>
<tr>
<td>2 m</td>
<td>2 m</td>
<td>0.5 m</td>
</tr>
<tr>
<td>1.04.0089.00301</td>
<td>1.04.0089.00001</td>
<td>1.01.0081.00200</td>
</tr>
</tbody>
</table>

www.ixxat.com/accessories
Developing with IXXAT means

✔ Shorter time to market
✔ Avoiding development risks
✔ Predictable development costs
✔ Competitive advantage through use of modern technologies
✔ Focus on core competencies

For well over twenty-five years, development services have been an important part of IXXAT’s activities. More than 80% of our 80 employees are electronics engineers and computer scientists. About half of our development engineers support our customer projects with their experience.

IXXAT offers services in all phases of development, beginning with the definition phase of products or systems. As a discussion partner, IXXAT is available to produce studies, to develop concepts, create requirement specifications and to review your internally-development requirements with regard to the most suitable technologies and appropriate solutions.

IXXAT delivers the optimal solution including the application development. Designing and developing turnkey systems is an important strength that extends to the integration of hardware and software and the responsibility for the system operation and performance. IXXAT ensures that its customers receive the optimum solution with maximum protection of their investment.

In the implementation phase, IXXAT develops hardware and software for embedded systems and PCs from scratch or from modified versions of existing IXXAT designs. In the test phase, IXXAT is able to define and perform tests.

With IXXAT as your partner and hardware supplier, you’ll benefit from long-term availability, high quality, lifetime support, short delivery times, and “Made in Germany” quality.

With our subsidiaries, our sales offices and worldwide distributors we are able to provide on-site support around the world.

Our range of services

- Customized OEM hardware and devices (e.g. control units, single board computers, I/O modules, gateways, interface modules)
- Application development
- Embedded software (e.g. drivers, protocol software, application software)
- Safety-related hardware and software according to IEC61508
- Devices and systems for test and service
- Analysis and configuration applications

Project Examples

DPA 05
With the DPA 05, IXXAT developed a universal gateway for a leading manufacturer of commercial vehicles that is used in various forms for the diagnosis in commercial vehicles.

The DPA 05 employs a variety of interfaces such as CAN, ISO 9141 (K-Line and L-Line), J1708, USB 2.0, RS232, digital inputs and outputs as well as analog inputs. A boot loader is used to easily update the firmware and thus to individually adapt the device to new requirements.

IXXAT manufactures and provides long-term maintenance of this product for the customer. This ensured that the customer was able to easily order the device over a period of 10 years.

The increasingly difficult order situation for certain electronic components required the development of a successor product in close cooperation with the customer.

For this development, the embedded platform FRC-EP190 from IXXAT has been used as basis device. As the hardware and the operating system were already available, the development effort could be reduced to a few, limited adaptations. Parallel to the design of the DPA 06, the customer application could be adapted on the FRC-EP190 basis device.

AZG3000
Test and diagnosis device for testing vehicle control units with CAN-, K-Line and FlexRay interface

According to the requirements of a leading automotive supplier, IXXAT developed a universal testing device used in the fields of development, testing and service as well as functional testing and debugging in vehicles or test benches.

Based on a graphic touch screen, the device employed an easy-to-use user interface. The device supports a variety of functions, such as the reading of ECU fault memory, display and output of configurable metrics, reading and writing of ECU parameters as well as CAN monitor functions.

In addition to the development and testing, IXXAT furthermore manufactures and maintains the product.

FPGA-based interface module for prototype ECUs
For a leading manufacturer of vehicle ECU prototypes, IXXAT has developed a powerful interface module based on the specific customer requirements. The device supports different bus systems, including CAN, FlexRay and XCPonEthernet. In order to reach the desired flexibility, the module was designed with a FPGA and an operating system independent software interface, enabling advanced features like performing measurement tasks as well as applying of configuration and measurement values and software updates.

CANopen/SAE J1939 interface for joystick
For a manufacturer of joysticks used for the control of special vehicles, IXXAT developed an interface providing a CANopen and J1939 connection for the devices. The necessary hardware and software were specified and developed by IXXAT. Besides the microprocessor board, an additional I/O board provides a variable number of digital and analog I/Os, which enable customer-specific modifications of the joystick handle with additional control elements.

FlexRay/CAN Gateway
Based on the FlexRay/CAN gateway solution, IXXAT adapted a gateway configuration especially for use in test benches for a tier-one automotive supplier.

In this application, the FlexRay messages of the device under test were translated to the corresponding CAN messages of the existing test system as specified by the customer.

With this gateway developed by IXXAT the customer benefited from using existing CAN technology for its new FlexRay based control units without making any change.

IXXAT provided pre-configured FRC-EP150 devices, enabling the customer to put the new test benches into operation in time.
Headquarters, Branches and Distributors
Local Presence Worldwide!

A detailed list of our worldwide sales offices and distributors is available on our webpage:
www.ixxat.com · www.hms-networks.com

Distributed by

Sales
Sweden (HQ and International Sales)
Phone: +46 35 172900
Email: sales@hms-networks.com

Central Europe (Germany/Austria/Switzerland)
Phone: +49 721 989777-000
E-Mail: ge-sales@hms-networks.com

France
Phone: +33 368 368 034
E-Mail: fr-sales@hms-networks.com

United States / Canada
Phone: +1 312 829 0601
E-Mail: us-sales@hms-networks.com

Italy
Phone: +39 039 59662 27
E-Mail: it-sales@hms-networks.com

UK
Phone: +44 1926 405599
E-Mail: uk-sales@hms-networks.com

Internet: www.ixxat.com · www.anybus.com · www.netbiter.com

Product Development and Manufacturing Centers
HMS Industrial Networks AB
Stationsgatan 37 · 302 45 Halmstad · Sweden
Phone: +46 35 172900 · Fax: +46 35 172909
Internet: www.hms.se · Email: info@hms.se

IXXAT Automation GmbH
Leibnizstr. 15 · 88250 Weingarten · Germany
Phone: +49 751 / 56146-0 · Fax: +49-751 / 56146-29
Internet: www.ixxat.com · E-Mail: info@ixxat.com

Denmark
Phone: +45 35 38 29 00
E-Mail: dk-sales@hms-networks.com

India
Phone: +91 20 40111201
E-Mail: in-sales@hms-networks.com

Japan
Phone: +81 45 478 5340
E-Mail: ja-sales@hms-networks.com

China
Phone: +86 10 8532 3183
E-Mail: cn-sales@hms-networks.com